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Abstract—The development of intelligent service robotic

systems is currently an active eld of research in the robotts 22, z, Contextual information
community. For example assistive robots that can aid eldeyl le

and disabled people in daily life activities. One emerging

requirement for this type of system is the inclusion of the hy iy Minput dovios 1 1

user in the decision process through physical and cognitive h, § nput devics 2 |—22 Enabling m
collaboration. This human-in-the-loop (HIL) concept allows for  — Interface 4’@

Input device n

the use of the human perception and cognitive abilities in
order to safely achieve the tasks that would be too complex
to perform in a purely autonomous way. However, the overall
human-machine system is complex and may be dif cult to Noisy user feedback of robot state x
analyze. The user and the robot are operating in a closed

loop and both are potentially capable of adapting to the

other. The users may have a disparate set of noisy channels o ) )
available for communicating their intended commands to the Fig- 1. Simpli ed representation of the complete human-hiae system.
robot. The robots are typically dexterous and are expecteda

operate in an unstructured environment. Metrics can help in

the analysis, development, and benchmarking of this type of anq time copies thereof, together with information from the

system, by quantifying performance and driving the mutual
learning and adaptation process. However, there are currety context €), to produce robot commandsif that are as close

few such metrics available. Information Theory and related ~@s Possible to the user's original intention. The user weeei
information-based concepts have been applied in disparate noisy feedback about the state of the robgtgclosing the
elds such as communications, human factors, control theoy  loop. Feedback from the state of the input devices (visual
and cognitive processes. The work presented here attempts t and/or proprioceptive) is omitted for clarity in Fig. 1. Bot
identify metrics based on these concepts for assistive huma the human and the machine are assumed to potentially be

in-the-loop cognitive systems. . i
b cog Y able to perform some form of adaptation and learning.

. INTRODUCTION

Assistive robots are currently being developed to suppo
disabled and elderly people inside their own homes and , ,
other everyday environments. One example is the climbir O30 O )
assistive robot ASIBOT, developed at Universidad Carlo
Il de Madrid [1]. Several other assistive robot types exist
ranging from static systems like HANDY 1 [2] to mobile g
manipulators like KARES Il [3].

Fig. 1 is a simplied model of the complete human-
machine system for this type of robots. As can be seen in the
gure, the model assumes that the user has some intentional
commands for the robob), that are actuated through a set ,
of input devices. The disabilities of the user are modeled as o3
sources of noisez, which can be independent for each input
modality. The multimodal signals received by the cognitive - ’
part of the machine, here denoted the enabling interfadce, u—></
are thus noisy representations of the user's true intentbe = 777 c T
goal of the enabling interface is to use these noisy signals

O
2L

(a) Open-loop control. (b) Closed-loop control.

(c) Sensor § and actuator A) con-
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as a directed acyclic graph of random variables, see Fig. @pend probabilistically on both the user's true intergion
and analyzing it using concepts from Information Theory [5]H, and the nois&.
The system includes the current statewith valuesx 2 X , A model with a user both mentally and physically healthy
and the future statX'. The random variable representing thewill not include this noise. Assuming that input deviceshwit
controller,C, then senses the current state (with seand suf cient performance are available to the user, we would
actuates to achieve the future state (with actuédor This then haves(H), Cuymn . The subscriphis used to denote
can be represented by conditional probabilitig&jx) and physically healthy here. As stated in the channel coding
p(x9x; c). These can be viewed as representing a sensor attorem [5], there exists a coding system for this situation
actuation channel, respectively. The authors were fughkr such that the information from the source, the user's inteind
to derive the conditions for observability, controllabjliand commands, can be transmitted with an arbitrarily low error.
optimality using this method. Fig. 3 depicts our extension The interpretation of a mentally healthy, but physically
of this method to the human-machine system, introduced fisabled user attempting to control a complex system like an
[6]. assistive robot is then that of a source rich in informathmrt,
acting over a human-machine channel with limited channel
capacity. We are assuming this user has no limitation in
his/her ability to imagine commands, th8¢H )q = S(H ).
The subscripd is used to denote physically disabled here.
, The difference from the physically healthy user is then
D N v N the noise added in the human-machine channel, leading to
| N3 S(H)d > Chwmd -

This analysis is of little practical use however, if these
guantities cannot be measured. The purpose of this arsicle i
to identify information-based metrics for this purposedan
attempt to apply these metrics to representative data. It is
Fig. 3. The human-machine system as a directed acyclic geiqutwn for  hoped that these metrics may help drive the development of
two consecutive instances in time. assistive human-in-the-loop cognitive systems, by qiyanti

) ing performance and potentially motivating learning.
The controller C here includes both the user (more gener-

ally the HumanH) and the assistive robot (more generally II. METRICS
the MachineM). The goal of the human-machine system inA, “Empowerment”
the most general sense is then to maximize the ow of useful 5o of the central concerns when designing a human-

information between the human and the machine Over g, nine interface is to ensure the user feels in control of
noisy medlgm_. Thus, we are interested in the com_munlcathﬂe machine. This is among other expressed in one of the
Cm?nQEI.lfﬁ'Stgg bet(\;vehen“ﬁ souree a”h‘?' a rre]celvelt,i’\/! ' h“eight golden rules” of user interface design for computers
which will be epote the 'uman-machiné channe In t TS], promoting that the interface should “support internal
follov_vmg dlsc_ussmn _and W_h'Ch has channel capaCQi . locus of control.” In robotics, the term “mode confusion”
The information available in the source can be represent_%j sometimes applied, referring to the undesirable sitnati
by the Shannon entropy of the random variable representigh; occurs when the system's true state differs from what th
the human, here denoted &H ). The de nition for entropy ;ser predicts based on his/her mental model of the system.

(a) System at. (b) System at +1.

used here is shown in (1). Central to both these concepts is the relationship between
what the user inputs into the system, over his/her actuators
S(X) = P(x) log p(x): (1) and what the user perceives from the system, over his/her

x2X sensors.

In Information Theory terminology the stated goal is then Klyubin, Polani and Nehaniv [9] proposed “empower-
equivalent to transmitting this information over the humanment” as a task-independent driving principle for sensorim
machine channel with a minimum of errors. Chan andbr systems: “Empowerment quanti es the agemtstential
Childress [7] also applied information theory principles t ability to in uence the environment as measured by the
analyze the information transmission in the human-machireapacity to “imprint” information onto the environment and
system for tracking tasks. The analysis here differs in ithat later perceive the information via the sensors”. Formdily t
entails multimodality as well as learning, and is applied omeasure is de ned as the mutual information across a nite
the directed acyclic graph representing the system. number of past actuations and the current sensor value of an

More speci cally, the goal of the human-machine systenagent.
can be de ned as maximizing the ow of useful information To investigate this and similar measures the experimental
between the user and the assistive robot, given the usesstting seen in Fig. 4 was constructed. Here the system may
physical disability. As can be seen in Fig. 3, the disabilityallow for multimodal input and the user is being given an
is also here modeled as a source of noigeThe random explicit desired stateX 4. Noise can be added to the input
variable representing a given input devide, will then devices if required. This could be seen as a crude disability



simulation, and is of interest for testing this type of sysée require knowledge of the true intention of an agent's be-
outside of clinical conditions during the development ghas havior. This knowledge can be hard to obtain outside the
It could also facilitate more uniform subject pools for larg experimental setting. The one-step mutual information was
experiments, although only as an approximation to the reabked, with predictive information being de ned b§X ; X 9).
disabled users. For the purpose of this experiment the enetri o L

“empowerment” was then measured across the desired stite Quantifying Coordination

(the position of a virtual object on a screen), and the actual Another quantity of interest in the system shown in Fig.
state of the system (the position of a user-controlled &lrtu 4 is the amount of coordination across input modalities. A
object). It was assumed that the user's intention was tovioll very general de nition of modality is here used, including
the desired state as closely as possible. The one-step Imutdiferent DOF for the same input device. Zhai and Milgram
information was used, with “empowerment” being de ned[13] proposed “ef ciency” as a measure for the coordination
asl (Xq;X). involved in movements using input devices with N rotational
or translational DOF, based on comparing the actual trajec-
tory in N-dimensional space with the shortest possibleeHer
we propose calculating the mutual information across two
modalities, for example two DOF, as an alternative metric fo
guantifying coordination. The one-step mutual informatio
was used, withl (D;i;Dj) as the metric for quantifying
coordination.

I1l. MATERIALS AND METHODS
A. Introduction

\zj,‘ Z g A pilot study was performed to explore the application
of the metrics de ned on representative data. The metrics
Fig. 4. The experimental setting considered. are based on mutual information, which is calculated from

probabilities. This is typically estimated from the relati
frequency of events occurring, and thus requires a large
B. Predictive Information number of samples to be accurate. However, if the metrics

. ] ~_are to be applied to human-in-the-loop systems there are

Bialek, Nemenman and Tishby [10] proposed predictiv@mitations on the amount of data available, typically tens
information, in the form of the mutual information betweeny, pundreds of repetitions, and minutes to hours of data
the past and the future, as a general measure of compleXigtorded at tens of Hz. This contrasts the typical appbcati
of a time series. The measure can be said to quantify thg information-based metrics so far, for example in motivat
total information of past experience that can be used fQpy self-organizing behavior, where simulated environtaen
predicting future events, and has among other been app"@ﬂ?e the possibility of an nearly unlimited amount of sansple
to the behavior of mobile robots in an unknown environmenfy gpe degree-of-freedom (DOF) pursuit tracking task was
see [11]. Here the measure was found empirically 10 havgosen, with simple constant-amplitude sinusoidal move-
a maximum for a behavior which is both explorative andnents of the target. The dependent variables were thus the
sensitive to the environment. On the basis of this result, tkajectories of the target and the users-controlled cufue
was proposed that predictive information could be a prospegst independent variable was the frequency of oscillatign
tive candidate as an objective function for the autonomoyge target, with four levels: 0.05, 0.2, 0.8 and 1.6 Hz. The
development of behaviors. This property may be of interégkcond independent variable was a noise added to the user's

also for the system considered here, with two agents capa%ut with two levels: with and without noise.
of adapting to each other. The predictive information of an

agent's actuations should at least have some relation wilh Subjects

how random, or explorative, the agents behavior is. This The subjects were 3 male students of Universidad Carlos
may be useful information for whoever is trying to cooperatf)| de Madrid. None of the subjects were involved in the
with this agent. project related to this study. All subjects were right-hesd
In experiments on human-human collaboration an increaggd were between 25 and 27 years old with a mean of 26
in the speed and accuracy of movements with respect {@ars. There was 1 subject with corrected vision, and 2 had
when performing a task alone has been observed. This mgpevious experience with 3D input devices. All gave their
perhaps be interpreted as an unconscious strategy to mak®rmed consent to participate in the study.
the movements easily predictable by the other part [12],
and might also be a suitable strategy for a machine ageht Apparatus
cooperating with a human. The pilot study was conducted on a PC workstation in
It is important to note that the measure uses only the timan of ce environment, see Fig. 5. The participants worked
series of actuations performed, and does not for exampbm a 19 inch (482.6 mm) widescreen external liquid crystal



display monitor (Asus VW195S) with a 60 Hz refresh rateF. Data Collection and Conditioning
The input device was a 3Dconexion SpaceNavigator joystick The data recorded was the position of the target and the

with 6 DOF. The sensor of this system was held in thgser controlled cursor for each point in time, at 120 Hz. Thus
participants dominant hand and measured one rotationgh,roximately 14400 data points were available from each
DOF, nominally the roll angle. The remaining DOF wereg piect for each experiment condition. The data was then
not physically obstructed, but did not impact the movemen{ormalized to between 0 and 100 and generally dicretized

of the cursor on the display. The subjects were performing 5 states. The data discretization heuristic used was to
movements in a virtual environment based on the OpenRAVEaen, the number of bins for the state less than the number
simulator [14], updating at approximately 50 Hz. of samples divided by 3. For these operations the Matlab
toolbox of Lungarella, Pegors, Bulwinkle and Sporns [15]
was used.

IV. RESULTS AND DISCUSSION

The metrics “empowerment” and predictive information
was applied to the data gathered from the pilot study, and
the results can be seen in Fig. 7 and Fig. 8, respectively.
All subjects seem to behave in a reasonably similar manner,
suggesting that the experiment design and protocol was
suf cient for the purposes of this study. As can be seen from
the gures, there was a reduction with higher frequencies of
movement for both metrics. This makes sense qualitatively,
as the subject struggles to keep up with the faster moving
target. It is also consistent with results form the literatu
that shows an increase in mean square error with frequency,
see for example [16]. Furthermore, the results show a drop
D. Stimuli in both metrics with noise added to the user's input. This is

The stimuli presented on the display can be seen in Fi .ISO. t(.) ble elxpectehq, is the mcr:ea:jseq né)lsedwnl re;(:uce the
6. The stimuli included a small, light-grey disc represegti tatistical relationship between the desired and actats sis

the target and a larger dark-grey disc representing thesuse\fye”haS across past and ?:]urrdgpft user 'nprt' As thhe freqlagpcy
cursor. The latter was allowed to be obscured by the tar98[ th e target |chheases, t 'eh : e_renc(cje eg/veen the conditi
disc, but was always visible due to the larger size. For hatt't _hoise anc the one without IS reduced. , )

of the trials noise was added to the user's input. This was It.|s interesting to note thatpredlctlvelmformauon proes

an approximate white noise, low-pass ltered with a cut-offiMilar results as “empowerment’, without knowledge of

Fig. 5. The experiment setup.

frequency of 5 Hz. the deS|_red trgjectory. As_ mentioned _before, th|s_, makes
the metric easier to apply in non-experimental settings, fo

x(t) x, (1) example in assessing performance during usage by the end-

; o user. For both metrics similar developments were found

for different state discretization, although the actudlga
increase with number of states.

O :

|<;—q>| “a Subjecﬂ '
e(t) Subject 2
4 @ Subject 3
1~ Subject 1 - noise added
. . . . . c Subject 2 - noise added
Fig. 6. Representation of the experiment stimuli. % £ Subject 3 - noise added
E3 g
5.
E. Procedure £
. . . . @ 5 & 8
Each subjects session lasted approximately 40 minutes, =2 2 ¢ BN
starting with a thorough brief of the task procedures. Each = =
experiment included 8 different combinations of tracking 1t S |
frequencies and noise added, each repeated 2 times for nor T
training trials. All subjects were rst given 2 minutes for o . . ‘ . . .
ini ; ; i 02 04 06 08 1 12 14 16
training to get acquainted with the task and the experinienta Frequency (Hz)

setup (0.2 Hz and no noise added to input). The participants

then performed the 16 attempts of one minute each, withg. 7. "Empowerment” with varying target frequency andseoadded to
breaks in-between as needed. user input.



(a) Subject 1.

Fig. 8. Predictive information with varying target frequgnas well as
with/without noise added to the user input.

To explore the utility of predictive information in online
applications, two subjects were asked to perform a simple
two-minute session after having completed the originaitpil
study. The target was moving at 0.8 Hz and no noise was
added to the user's input. For this test only, the mapping of
the de ections of the joystick to the movements of the cursor
on the display was altered. Where before pitch movements
were consistent with both direction and magnitude of theig. 9. Trajectories of target (dotted cyan line) and usertradied cursor
movement of the cursor, the new mapping involved negativgolid red line) when adapting to a new mapping from the ingiaitice to
yaw and a non-linear magnitude relationship. This causdf cursor movements on the display.
the device to became more sensitive with higher de ections.

The subjects were not informed of the exact mapping before
performing the test, only that the mapping had changed from
the previous study. The resulting trajectories can be seen i
Fig. 9. The subject numbers do not necessarily correspond
to that in the original pilot study.

As can be seen from the trajectories, subject 1 was able
to achieve reasonable tracking after about 40 secondsg whil
subject 2 took less than 15 seconds. For the analysis of this
data the time was binned at approximately 10 Hz. The pre-
dictive information was then calculated over 60 overlagpin
periods of 120 bins each, corresponding to about 12 seconds
of data per period. The state was here discretized to 25 bins.

As can be seen from the results in Fig. 10, the development - .
of the metric con rms the qualitative observation from the"9: 10- Predictive information (calculated over 12 secpedods) after

. . . . . a change in the mapping from the input device to the cursoremewnts on
trajectories made above. After discovering the approx@émathe display.
mapping, each subject's performance converges to more or
less the same level. Applied in this fashion the metric shows
promise as a candidate for motivating online adaptatioh&o t rotations. The resulting 12 attempts for 1 out of 16 condiio
user, with values available on the order of tens of secondgan be seen in Fig. 11, for three different subjects.

The coordination across DOF was also investigated. For From the trajectories it can be seen that subject 1 and 2
this analysis, data from a previous study on applying Fittgderformed the task in a relatively parallel fashion, timthg
law [17] to combined rotational and translational moversenttranslational and rotational movement to start and nish at
was used. In this study subjects were asked to perforapproximately the same time. Subject 3 on the other hand,
movements that had both a 1 DOF rotational and a 1 DOd#id not begin the rotational movement until the transladlon
translational magnitude and accuracy requirement, see Stanovement was more or less completed. This subject was the
len and Akin [18] for details. Each condition had a differenonly one among the 12 subjects used that did not perform the
magnitude and accuracy requirement. The magnitudes rangeadk in paralell. It can also be seen that subject 1 performed
from 4.8 to 12.7 cm for translations and 50 to 130 degrees ftihe task in a more coordinated fashion than subject 2, with

(b) Subject 2.



the trajectories varying little across attempts. The tt@jges is an interesting result, as not only does the metric quantif

shown are representative of the performance of the subjeeadifference in coordination for subjects that performeal th

on the remaining 15 conditions. task in parallel and in a serial fashion, but it is also twice
as large for the more coordinated subject 1, as compared to
subject 2. Although the application here was on two DOF
from the same input device, it is not unlikely that the metric
could be used in a similar fashion for multimodal interfaces
For example to quantify the ability of a user to effectively
coordinate two input devices to achieve a given goal.

V. FUTURE WORK

The study performed for this article was very limited
in its scope, both in terms of the number of subjects and
in the simplicity of the task performed. The future work
will therefore include more extensive controlled expetitse
where these weaknesses can be adressed. These experiments

(a) Subject 1. should include a larger pool of subjects, should address the
stationarity of the data collected and include comparisons
with existing metrics for the tasks performed. In addition i
would be bene cial to begin to explore the application of
the metrics to more realistic situations. This could inelud
attempting to quantify the performance of users with real
disabilities, coordination of disparate input modalitiesd
exploring the use in a system with mutual adaptation by the
human and the machine agent.
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