Experimental Method and Benchmarking in Mobile Robot Networks

Weidong Chen

Institute of Robotics and Intelligent Information Processing
School of Electronic, Information and Electrical Engineering
Shanghai Jiao Tong University

Workshop ICRA 2011
Towards Replicable Experiments in Robotics Research
Outline

• Introduction

• Experiment design for behavior-based approaches

• Modeling of robot networks

• Benchmark of robustness and evaluation tasks

• Conclusions and future work
Introduction

• What are robot networks?
 – multiple robots operating together coordinating and cooperating by networked communication to accomplish a specified task.
 • Capable (beyond capabilities of single robots)
 • Fast (working in parallel)
 • Extensive (Harnessing physically removed assets)
 • Robust (fault tolerance)
 • Efficient (Improved efficiency)

• Applications
 – Manufacturing
 – Defense
 – Space
 – Domestic robots
Fundamental Challenges

• Complexity increases because
 – Decentralization
 • Perception
 • Computation
 • Action
 • Communication
 – Spatially and temporally distributed

• Control
 – Localized to globalized
 – Inverse problem (e.g. swarming)

• Seamless integration of control, communication and perception
 – Modeling
 – Analysis of stability and robustness
 – Synthesis
Biological Inspirations

• Social characteristics of insects and animals
 – Applied to the design of multi-robot systems
 – Various biological societies—particularly ants, bees, and birds
 • Simple local control rules
 • Development of similar behaviors in cooperative robot systems

• Communication
 – Implicit and explicit communication
 – Effect of communication on the performance
 • benefit for particular types of tasks
 • in many cases, communication of even a small amount of information can lead to great benefit

• Behavior-based control
 – Strong influence on the filed of robot networks
Experiment Design for Behavior-Based Approaches
Multi-Robot Systems

- Robots
 - Mobile robot
 - Local sensing
 - Omni-vision, vision, laser range finder, odometry
 - Global communication
 - Inter-robot wireless communication

- Cooperative tasks
 - Formation
 - Trash collection
 - Robot soccer

- Environments
 - Unstructured
 - Unknown or partially unknown
 - Dynamic and competitive
Behavioral Control for Robot Individuals

• Motor schema model [by Arkin]
 – Integrate many competing behaviors in a coherent whole
 – Integrate in an unique framework data-driven, bottom-up processes
 – Distributed control

• Primary behaviors
 – Move to goal
 – Wander
 – Avoid obstacle
 – Spin around object
 – Avoid boundary
 – …
Behavioral Control for Robot Individuals (Cont.)

- Task Planning
 - Finite State Automata (FSA)
- Behavior fusion
 - Weighted sum of each active behavior vectors

\[\vec{F}_o = \sum_{i=1}^{n} W_i \vec{B}_i \]

\[\begin{align*}
V &= V_{\text{max}} ||\vec{F}_o|| \\
\omega &= C \angle \vec{F}_o
\end{align*} \]

FSA and behavior fusion

Move to goal + Avoid obstacle
Behavioral Coordination for Robot Networks

• Primary team behaviors
 – Formation keeping
 – Formation switching
 – Leader Following
 – Aggregation
 – Dispersion
 – ……

• FSA based team task planning
 – Environment adaptive formation
Multi-Robot Experiment Platforms

• Heterogeneous multi-robot team
 – Pioneer 2-DX mobile robot
 – Frontier-II mobile robot

• Networking structure
Case Study 1: Multi-Robot Formation

- Behaviors
 - Formation keeping
 - Motor schema
 - Move to goal
 - Avoid obstacle
 - Formation switching

- Homogeneous team
 - Video: Obstacle avoidance in formation

- Heterogeneous team
 - Video: Adaptive formation switching

\[
V = \sum_{i=1}^{n} w_i V_i, \quad \omega = \sum_{i=1}^{n} w_i \omega_i
\]

\[
\sum_{i=1}^{n} w_i = 1
\]
Case Study 2: Cooperative Trash Collection (I)

• Robot team and task
 – 4 mobile robots
 – Collect the colored cans and deliver to home base

• Role assignment
 – 2 subgroups
 – Each subgroup has a collector and a deliverer (trash-cart)

• Team behaviors
 – Inter-robot collision avoidance
 • Stimulated by sonar
 – Following and coupling
 • Between collector and deliverer
 • Master-slave control mode
 • Stimulated by vision and communication
 – Repulsing
 • Between two subgroups
 • Workspace division
 • Stimulated by vision

FSA of trash collector
Case Study 2: Cooperative Trash Collection (II)

- **Experiments**
 - Replicable task and environment
 - Comparison between different schemes
 - Statistical analysis of experimental data

- **Performance metrics**
 - Time of task completion
 - Traveling distance
 - Uncertainty

![Bar chart showing mean time of task completion in different schemes]

- **Video: Trash Collection**
Case Study 3: Robot Soccer (I)

- **Overall RoboCup goal**
 - By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team.

- **RoboCup Middle Size League**
 - Two teams of mid-sized robots with all sensors on-board play soccer on a field.
 - Relevant objects are distinguished by colors.
 - Communication among robots (if any) is supported on wireless communications.
 - No external intervention by humans is allowed, except to insert or remove robots in/from the field.

- **Cooperation in competitive environment**
Case Study 3: Robot Soccer (II)

- Team coordinator
- Cooperative perception
 - Cooperative map building
 - Cooperative localization
- Team behavior
 - Defense formation
 - Offence formation
- Role allocation
 - Dynamic role assignment

- Task planning
 - Finite State Automata (FSA)

- Video: JiaoLong-NuBot in RoboCup 2006

FSA of forward player
Modeling of Robot Networks
Motivation

• How do we identify and quantify the fundamental advantages and characteristics of robot networks?

• Establish an interaction dynamics model for mobile robot networks
 – Network topology model
 – Individual motion model
• **Network topology model**

 – **Graph theory: the coupling matrix**

 \[A = (a_{ij}) \in \mathbb{R}^{n \times n} \]

 – **K-neighbours models**

![Fig. 1 Four typical topologies of mobile robot networks](image)

\[a_{ii} = -\sum_{j=1, j \neq i}^{n} a_{ij} = -d_i \quad d_i \text{ denotes the } \text{degree} \text{ of the robot } i. \]

Denote the index set of the *neighbors* of the robot i as

\[N_e(i) \triangleq \{ j \mid a_{ij} = 1 \} \subseteq \{1, 2, \ldots, n\} \]
Modeling (II)

• Individual motion model

Continuous-time dynamics of each mobile robot

\[
\begin{align*}
\dot{p}_i &= x_i, \\
\dot{x}_i &= u^e_i + u^c_i, \quad i = 1, 2, \ldots, n,
\end{align*}
\]

(1)

- \(u^e_i\) stands for effect of the environment upon robot \(i\)

- \(u^e_i = f(p_i, x_i)\)

- \(u^c_i\) stands for effect of neighboring robots upon robot \(i\)

- \(u^c_i = \sum_{j=1}^{n} a_{ij}(k) \cdot (p_j - q_{ij}) + \sum_{j=1}^{n} a_{ij}(k)x_j, \quad i = 1, 2, \ldots, n\)

- \(c_1, c_2 > 0\) represent the coupling strength of the network

- \(q_{ij}\) represents the desired relative position of the robots \(j\) and \(i\), viewed as the physical topology.
Benchmark of Robustness and Evaluation Tasks
Motivation

• Self-healing
 – It is necessary to self-heal the network topology to prevent the network from being broken with failed robots
 – Process of recovering topologies and system performances of networks from failed robots

• Disadvantage of only self-healing communication topology
 – Higher energy consumption with enlarged communicating range
 – Larger blind zones with finite sensing range for coverage task

• Take advantage of mobility of robots
Topology Control for Self-healing

- **Aim of self-healing**
 - Substituting robots with lower degree for failed robots with higher degree

- **Self-healing rules and algorithm**
 - Rule 1
 - **Candidates generation:** neighbors of the failed robot i_f with lower degree than i_f
 - Rule 2
 - **Filling robot selection:** the candidate with lowest degree
 - Rule 3
 - **Randomly choosing:** form the filling robots with the same degree
Stability Analysis

- Achieve synchronous speeds if

\[x_1(t) = x_2(t) = \cdots = x_n(t) \rightarrow \nu(t), \quad t \rightarrow \infty \quad (5) \]

- Rewrite the network as a general expression of dynamical networks

1. Suppose \(c = c_1 = c_2 \)

\[
\begin{bmatrix}
\dot{p}_i \\
\dot{x}_i
\end{bmatrix} = \begin{bmatrix}
x_i \\
f(p_i, x_i)
\end{bmatrix} + c \sum_{j=1}^{n} a_{ij}(k) \begin{bmatrix}
0 \\
I_N
\end{bmatrix} \begin{bmatrix}
0 \\
I_N
\end{bmatrix} \begin{bmatrix}
(p_j - q_{ij}) \\
x_j
\end{bmatrix},
\]

2. Denote \(\Gamma = \begin{bmatrix}
0 & 0 \\
I_N & I_N
\end{bmatrix} \) and \(y_i = [p_i - q_i, x_i]^T \in \mathbb{R}^{2N} \) \(i = 1, 2, \ldots, n \),

Rewrite the network as:

\[
\dot{y}_i = F(y_i) + c \sum_{j=1}^{n} a_{ij}(k) \Gamma y_j, \quad i = 1, 2, \ldots, n, \quad k = s(t), \quad A(k) \in \Omega \quad (7)
\]
Stability Analysis

• Stability condition
 – The exponential stability of (8) is transformed to the exponential stability of the system
 \[\dot{\omega} = [DF(s) + c\lambda_i(k)\Gamma]\omega, \quad i = 1, 2, \ldots, n, \quad k = s(t) \]
 – System is stable if the inequality should hold
 \[L_{\text{max}}(\lambda_i(k)) = h_{\text{max}} + c\lambda_2(k) < 0, \quad i = 2, \ldots, n, \quad k = s(t) \]
 – Stability condition for the synchronized states of (8) is
 \[c > \frac{h_{\text{max}}}{|\lambda_2(k)|} \]
 – A sufficiently large \(c \) guarantees the synchronizability of the network
Simulation

- **Self-healing for 10 failed robots**
 - $n=100$
 - The blind zones of sensing in the network decreases.
 - The second-largest eigenvalue of the coupling matrix is maintained almost fixed

- **Video: self-healing 10**

(a) Topology before self-healing
(b) Topology after self-healing

Conclusions and Future Work

• The hierarchical architecture combining deliberative planning and behavior-based control is powerful and practical for controlling robot networks.

• The methods for experimental system setup, benchmark tasks, performance metrics are provided.

• A stability and robustness analysis methods are proposed for mobile robot networks based on interaction dynamics model.

• Statistically experimental data are important for revealing the true performance and uncertainty factors.

• The field of robot networks is still so new that no topics area within this domain can be considered mature.

• Real-world experiments
 – Close to practical applications: mapping and localization, search and rescue,……
 – Close to real-world environments: indoor to outdoor, 2D to 3D, small-scale to large-scale,……
Thank you!