
  

  
Abstract - This paper describes the development of techniques 
used to evaluate the effectiveness 
of adaptive technology algorithms applied to robotics platforms 
in the execution of two Defense Advanced Research Projects 
Agency (DARPA) programs. It also describes how these 
procedures were modified and improved over the course of 4 
years to adapt to continually improving robotic performance. 
Exploration begins with early multi-team experiments on 
wheeled platforms exhibiting special recognition by moving 
through sensed environments.   Techniques described include 
selection of testing scenarios, choice of a cooperative testing 
scheme, design and maintenance of testing environment, 
performer/evaluator interactions, and evaluation metrics. 
These procedures are then transferred to new multi-performer 
experiments involving legged platforms and modified to meet 
the needs of this markedly different and more challenging 
testing environment.  Key changes addressed include 
identification, selection and design of terrain scenarios, shifting 
from a sensed to a ground-truth environment, moving to a 
competitive testing scheme, design and construction of a unique 
testbed, a more streamlined and rigorous performer/evaluator 
interaction, and changes in focus of evaluation metrics. The key 
outcome of this process is that it has effectively enabled the 
Agency to analyze and assess the results from the two sets of 
experiments as it plans for future robotics programs.  
 

I. INTRODUCTION 
 

Adaptive technologies are, in general, processes that allow 
a system to adapt to the environment it is in even if it is 
radically different from the environment the system was 
initially trained in.  In robotics this is a highly valuable trait 
as it allows autonomous systems to function in a variety of 
situations without the need for a constant re-supply of user 
input.  The Defense Advanced Research Projects Agency 
(DARPA) Information Processing Techniques Office (IPTO) 
has been fostering these types of adaptive technologies 
under the umbrella description of "learning."  Two such 
programs are Learning Applied to Ground Robotics (LAGR) 
and Learning Locomotion (L2).  
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As critical as the technological advancements put forth by 
the variety of performers in these programs are, so are the 
techniques utilized by the government to assess the quality 
of these advancements.  This paper is primarily concerned 
with these testing and analysis techniques as they were 
developed in early wheeled platform testing, culminating in 
the LAGR program, and how they have been adapted and re-
applied to the radically different environment of legged 
platforms, namely the L2 program.  
 

II. WHEELED PLATFORMS 
 

A. Background 
Beginning in 2000, DARPA began investigating off-road 

ground robotics with the start of the Perception for Off-Road 
Robotics (PerceptOR) program and the Unmanned Ground 
Combat Vehicle (UGCV) program.  While UGCV studied 
the development of new unmanned ground vehicles, 
PerceptOR looked at the development of algorithms to 
improve the capability of unmanned vehicles driving in off-
road, unstructured terrains. From a robotic field testing point 
of view, this proved to be quite demanding. During the three 
year effort, the Government held six month-long 
experiments at four unique test sites. While effective at 
improving the state of the art by 60-70%, systems would 
often prove fragile when introduced to a new environment. 
However, this exposure to new environments was key to 
producing algorithms that could be deployable. In 2004, 
as PerceptOR ended, DARPA looked to create a new model 
for evaluation that would test more frequently in continually 
changing environments, which led to the LAGR program.  
   
B. DARPA Program: Learning Applied to Ground Robotics 
(LAGR)  
 
1) Inspiration  

The new approach for LAGR was to incorporate adaptive 
learning techniques into established navigation algorithms to 
see if this could increase the rate at which progress was 
being made in the field. This “learning” ability included 
many approaches, the most important of which was long-
range scene interpretation.  The initial belief was that long 
range (defined as outside stereo range) planning could not be 
done with specific hard coded programs. The desired end 
result, when paired with learning ability, would be 
navigation that could use more intelligent abilities, 
thus pulling 3D information from 2D cues.  
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2) Platform: HHerminator  
 

 
 

The onboard sensor packages included two stereo camera 
pairs (Point Grey Bumblebees), an infrared proximity 
sensor, and bumper-activated switches for obstacle impact 
detection.  Navigation capabilities included an XSENS 
three-axis gyro inertial measurement unit, compass, 
accelerometer, and a WAAS-enabled Garmin 16A global 
positioning system receiver.   

Mobility governance was set at a maximum speed of 1.3 
m/s.  Independently driven 24V DC motors supplied power 
to the front wheels.  The rear wheels were two simple 
casters, which are free to rotate and pivot.   

Computational capabilities included one embedded low 
power VIA processor for low level control such as control 
and motion of the wheels.  Three dual core Pentium M based 
boards were imbedded onboard with one for each of the two 
stereo eyes, and the third for route planning.  Finally, a 
gigabit Ethernet card provided the infrastructure for 
communication between onboard machines, while external 
communication was handled by a 802.11b wireless router.  

The agreed upon standard was to utilize RedHat Linux as 
the base OS of choice for the project.  Although, teams were 
allowed to install and run the compiler of their choice as 
well as program in the language of their choice.  The 
primary constraint was that any libraries in use by their code 
must be contained only on their planner flash disk.  This 
came as an attempt to constrain the teams so that no calls 
could be made to machines other than the main OS installed 
on their flash disk. As a result, implemented code had 
restricted access to the libraries used by the planner code 
stored on their eye machines.  

 
3) Testing 

The overall approach in the LAGR program was to foster 
cooperation among the research teams.  It was decided in the 
infant stages of the program that the down selects would be 
purely metric based with no predetermined limits on the 
number of teams proceeding to subsequent phases.  The lack 
of a competitive down select allowed the teams involved to 
share ideas amongst themselves to rapidly pass over hurdles 
that might slow progress in an isolated environment.  

Teams were tested in real environments selected by the 
government team on a monthly basis.  One of the most 
important test strategies was to provide a general “theme” 
for testing (learn by example, GPS denied environment, etc.) 

while holding back enough situational information to 
prevent hard coding for a specific environmental feature set.  
Teams knew which element of navigation was to be 
explored during a test but not the specifics associated with 
the site.    

Once the test site was determined, general procedure was 
to provide the team code with a waypoint file which listed 
the goal point of that particular test.    
  All teams were run on an identical course and wherever 
possible all elements of the course were reset to initial 
locations.  The starting point was reproducible to within 5cm 
and roughly 5 degrees orientation on each run.  Although 
weather and lighting conditions were outside the realm of 
testing team control, run times were randomized to prevent 
any systematic error they might produce.  While not on site 
with us in person, access to the test was made available to 
teams in the form of multiple live video streams.  At any 
given time during the test, all teams could pull streams from 
1-3 on site cameras, all of which had pan, tilt, and zoom 
capabilities so they could closely follow the vehicle. An 
additional video stream was provided that showed the output 
of the operator control station (OCS); the OCS provided 
information on the real time state of the robot during runs.  
Teams were also encouraged to call in to a central 
conferencing number during their specific time slot and 
discuss their performance with the government team in real 
time as well as provide insight into what the government 
team was seeing.  
 Various test facilities around the country were used, to 
provide a variety of terrain, texture, and foliage: 

• Ft. Belvoir, Springfield, VA 
Primary terrain consisted of sparse grass with 

medium to large open areas surrounded by thick 
sets of trees.  Used when doing basic tests or when 
the government team had a specific course 
modification in mind, such as a man made maze.   

• Cold Regions Research and Engineering Laboratory 
(CRREL), Hanover, NH 

This location provided lush and green 
vegetation, ideal  for poor GPS coverage, 
challenging elevation changes/grades, and 
generally below average vehicle traction.  Given 
that one of the techniques teams used to determine 
vehicle location was observing the wheel motor 
encoders, the often wet and slippery ground 
provided unique challenges as well.  

• South West Research Institute (SWRI), San Antonio, 
TX  

This location had a generally aridness with 
mostly brown vegetation.  Trees in the area were 
generally thin which made them difficult to 
reliably detect using the robots onboard stereo 
vision.  Although GPS coverage in the area was 
excellent, there were areas with a thick enough 
canopy to produce a GPS restricted environment.  

 
 
 
  



  

• Eglin AFB, Pensacola, FL 
A combination of wide and open tarmacs and 

sparse to dense vegetation provided a perfect 
environment to focus on long range planning and 
obstacle avoidance.   

• Ft. Bliss, El Paso, TX  
This location was chosen to examine the effects 

of degraded traction and motion control on the 
robot and planning algorithms.  The overly sandy 
and loose terrain exposed limits the vehicle 
capabilities and flaws in the code used to 
compensate for slip conditions.  

 
Data was recorded real time to two 40GB onboard log 

disks on the robot.  These logs contained all data from the 
run, stereo camera feeds, and GPS data.  The logs were 
extensive enough that the run could be duplicated 
completely in a software environment.  The rate at which 
logs were taken was proportional to vehicle speed; i.e. the 
faster the robot  was moving, the higher the data rate the logs 
would record at.  After the runs the disks were swapped out 
from team to team and copied to two 1TB storage disks.  
These disks were then duplicated and a single copy was 
forwarded to each team.  Also, all on site video was recorded 
during all runs and the video and OCS streams were 
included on the 1TB storage disks forwarded to every team 
as well.  

 
4) Evaluation and Metrics 
 Results were reported as a score that was tabulated by 
comparing the performance of the performer code to that of 
a baseline system which was run on the same course and 
under the same conditions.  In our case, the key performance 
metric was speed, because as a system learned about the 
terrain it was traversing is should able to maximize it’s 
efficiency in reaching the goal. Three trials were run, with 
each being capped at ten minutes of runtime due to battery 
life and logistics of testing numerous performers.  The two 
fastest trials were then averaged together to give an overall 
time score for a performer.  

The baseline software used simple obstacle avoidance and 
path planning and did not take into account the type of 
object it was avoiding or do any other scene interpretation.  
The baseline could “see” objects up to 10m out and plan 
around them, always trying to get to the goal as defined by 
GPS.  
 The performer’s software was then loaded onto the same 
platform that the baseline code was executed on, was given 
the same start and goal points, and was expected to exceed 
the baseline’s performance by a factor of at least two.  This 
would show the definitive impact that learning had when 
compared with the baseline system. 
 
5) Summary 

A few things were learned from the testing techniques in 
the LAGR program.  Foremost is that interactions in real 
time with teams during testing are crucial.  After action 
reports are standard while providing moderate feedback, but 
having teams online when the experiment is happening 

provided invaluable commentary and analysis from 
performers and test directors alike.  An added serendipitous 
result of the live teleconferences were that often times 
asking teams for thoughts on the spot lead to inadvertent 
breakthroughs.  In the first few tests, the video streams and 
conference calls were considered optional; they very quickly 
became tools the teams and the government couldn’t live 
without.  Secondly, hardware standardization and 
maintenance became a top priority.  With limited sensing 
capabilities, the vehicle relied heavily on a single part 
functioning in a predictable manner every run.  A minor 
mechanical shock to the mast of the robot that houses the 
stereo cameras could cause erratic performance in 
subsequent runs, causing the teams to search for code based 
performance issues that just were not there.  As the vehicles 
experience more and more wear, calibration and 
maintenance schedules became critical.  Although, given the 
size of the vehicle and limited available spare vehicles, this 
lead to difficulties if there was a mid-test mechanical 
failure.  It was found to be advantageous to cycle robots in 
and out of service, frequently sending the hardware back to 
the producer for refurbishing whether defects were known or 
not.  In addition, calibration algorithms were created to 
promote more accurate camera to robot location transforms.  
With more frequent calibration, mechanical impacts with the 
robots weren’t as large a concern.  

The project concluded in the spring of 2008 after 26 tests 
over four years.  The threat identification and path planning 
code developed during this effort set a new state of the art in 
the field and has been transitioned into other unmanned 
platforms.  

 
III.  LEGGED PLATFORMS 

 
A) Background 
For the greater part of the last decade, an increased 
investigation has been put into the benefits of biped and 
quadruped locomotion.  Made famous by the efforts of 
Sony’s AIBO dogs, Honda’s ASIMO, and DARPA’s Big 
Dog prototype, the feasibility of reliable legged vehicles 
have been shown to be possible.  Although legged robotics 
have many advantages over their wheeled counterparts, they 
have  issues dealing with mobility over terrain while 
maintaining their balance. After further investigation of 
these balance and mobility challenges, legged platforms 
have proven to have higher potential for direct troop support 
on the ground as the limits of wheeled locomotion limitation 
are not present.  
 
B. DARPA Program: Learning Locomotion (L2)  
1) Inspiration  

Even after the successes of the UGCV and PerceptOR 
programs, two challenges remained for robotics: perception 
and locomotion.   As LAGR focused on long range 
perception and path planning of a sensed environment and 
not the mobility of the platform, the other side of the 
equation was to focus on locomotion and mobility 
techniques while holding the perception of the terrain 
constant.  The result was the start of DARPA’s L2 program.  



  

The driving question through this effort was, “with perfect 
knowledge of terrain and surroundings, what is the best way 
to traverse obstacles?”   
 
2) Platform: LittleDog 
 

  
 

 The LittleDog platform, developed by Boston Dynamics, 
is a four-legged small walking platform.  Each Leg has three 
degrees of freedom, giving the overall robot twelve degrees 
of freedom.  Each leg contains three electric motors and a 
three-axis force sensor in the foot.  The two Li-ion batteries 
supply enough power for approximately 30 minutes of 
continuous use. Top speeds of 25+ cm/s have been 
demonstrated, using a trotting gait on flat terrain with this 
platform. 
 Positioning is determined using a combination of an 
onboard IMU and a six-camera Vicon motion capture 
system.  IMU and foot sensor data are relayed to a host 
computer, via 802.11g wireless, where it is combined with 
the position data from the motion capture system. 
 All the high-level processing is performed on a Pentium 
quad core desktop computer. All the performers use the Red 
Hat OS, and are free to use the programming language of 
choice, which have included MATLAB, C, and Java.  All 
commands are given to the robot through the API developed 
by Boston Dynamics, limiting the performers to the amount 
of control they have over the joints, as well as limiting them 
to an execution speed of 100 Hz on the robot. 
 
3) Testing  

Influenced heavily by the LAGR program, it was 
determined that the most effective way to evaluate learning 
systems in a tight timeframe and  keep the performers 
focused, was to do regularly scheduled testing.  Like LAGR, 
a monthly test was scheduled with several intentions in 
mind: maintain an aggressive technology development, 
continue to test on a varied assortment and increasingly 
difficult terrains obstacles, and look for a rapid turnaround to 
a difficult end of phase metric objectives.   Unlike the 
LAGR cooperative effort, the competitive style of the L2 
program limits the open communication between teams. 
Nevertheless, the L2 program does allow for the continued 
development of several different styles and approaches.   

The end of phase metrics of this testing approach is static 
and a down select of performer teams occurs for those who 
do not successfully meet the required performance 
objectives.  With a required down select process, an added 

pressure is put on the teams to not only develop the best 
code they can, but also to make significant progress when 
compared to the other performers. The difference in testing 
styles has its benefits and drawbacks, but for the structure of 
the respective programs, each style is appropriate for the 
sought after goals.  

The initial method of test execution was adopted from the 
LAGR methodology.  Initially, each performer would ship a 
250GB hard disk drive to the government team a few days 
before the test.  Upon arrival, each hard drive would be 
installed and booted to make sure everything worked 
correctly.  Once testing was complete, post processing 
included creating a duplicate image of the drive. This copy 
was stored at the government team’s test site 
for archival purposes as well as for comparisons of old 
performances to recent trials.  Once imaging was complete, 
each drive was repackaged and shipped back to the 
performers.  The entire process proved time consuming, and 
highly inefficient.  

An evaluation was made of test procedures and 
determined a need for successful test executions while 
efficiently keeping the performer teams remote.  The current 
method of submitting code takes advantage of advanced 
software revision control programs (i.e. SVN, CVS, etc) 
coupled with high-speed internet connections and cheap 
storage.  The L2 Government Team (LLGT) now has two 
hard drives that are kept on site for each performer: a drive 
used for the open tests (disk A), and a drive that is used for 
the closed tests (disk B).  The day before each monthly test, 
the LLGT allows the performer to remotely login, modify, 
and update the software on disk A to the code base they plan 
on using for the upcoming test. After each team has updated 
the software, a quick shake-out trial is run.  This trial is  
usually on a simple version of the upcoming terrain, or just 
across a flat surface, to verify that all the updates have been 
applied correctly and there are no major differences in the 
behavior the performer sees on their hardware as compared 
to the behavior we see at our site with our hardware.   

By cutting out the time involved in shipping drives, 
making images, and other pre- and post-test procedures 
involved with the LAGR inspired method of software 
updates, teams have several more days per month to develop 
their software as well as increased the amount of time for the 
LLGT to test each month.  The LLGT is now able to 
perform trials for all performers, on three separate terrains, 
whereas initially only one terrain was attempted in the same 
time frame.  

Phase 1 boards focused on rocky, "real-world" terrain 
styles.  Though several iterations were required before an 
acceptable difficulty was discovered, the final test featured a 
board that was designed by fastening real rocks to a MDF 
base; this resulted in the most natural board at that point in 
the program.  In Phase 2, our focus shifted to geometric 
terrains (such as rectangular barriers, steps, and slopes) 
attempting to remove some of the haphazardness involved in 
the path planning and execution.  Currently, Phase 3 has 
seen a continuation of geometric terrains, made to be much 
more challenging by increasing the number and variety of 



  

natural terrains, making the program more real-world 
applicable.   

During each test, the LLGT collects the automatically 
generated log files, videos from two high-definition cameras, 
along with high-speed video as needed.  All of the collected 
data and video are made available to the performers as soon 
as possible, usually within 24 hours of the test.  Test reports 
are generated by the LLGT and disseminated to the 
government and all performer teams outlining the purpose of 
each test, end of phase metrics to be sought after, and current 
and ongoing team progress.  

 
4) Evaluation and Metrics 
 Learning Locomotion’s key quantitative metric was 
speed.  The final criterion of success for the program is to 
have an average speed of 7.2 cm/s across several distinct and 
complex terrains that the performer has minimal prior 
knowledge of, as well as be able to navigate terrains that are 
up to 10.8 cm high (e.g. jersey barrier). Since this is a novel 
platform, and legged locomotion is still in it’s infancy, we 
choose our metric based off of the average speed of a fully 
laden solider traversing difficult terrain (1 mph) and scaled it 
down to the leg length of the LittleDog platform. 
 Evaluation has been done over three phases, each with a 
different expected metric that increased with the capabilities 
of the performer.  The phase 1 metric was 1.6 cm/s over a 
single rocky terrain, unseen by the performers, which was 
achieved by all performers. 
 For phase 2, many more terrains were generated (7) in 
many different styles, forcing the performers to create more 
robust software and greatly increasing the capabilities of the 
platform.  The metric speed was set at 4.2 cm/s, which was 
determined to be a realistic goal for the performers to reach 
in the 9-month timeframe while still encouraging progress 
towards the final metric speed for phase 3.  A competitive 
down select was also incorporated into the evaluation metric 
for phase 2.  Five of the six performers exceeded the metric 
speed, allowing them to continue work into phase 3. 
 During phase 3, we have continued the terrain trend 
started in phase 2, expanding a total of 13 different 
classifications of terrains, reincorporating more natural 
terrains.  This phase of the program is still on going and no 
results are available for publication at this time. 
  
5) Summary 

Since the beginning of L2, there have been several 
important lessons that we’ve learned thus far, the first of 
which is based in the refinement of the code updates and log 
storage.  After considering the availability of remote 
updates, online access, and readily available storage devices, 
shipping physical drives back and forth was determined to 
be too inconvenient and impractical.  Additionally, as 
enthusiasm builds to test the limits of the robot across 
varying terrain schemes and geometries, it is important to 
keep in mind the end of program goals as well as maintain 
the foresight of scaling such a platform up to a level 
adequate for war fighter support.  As the upper limits of 
static gaits are reached, the platform physical’s limitations 
have limited breakthroughs in high-speed dynamic 

behaviors.  This is discouraging in the short term, but yields 
potential for further insight and development in the future 
for legged robotics.  

Currently, the third and final phase of the L2 program is 
underway.  Focusing on more realistic terrains than that of 
prior phases and coupled with more aggressive speed and 
height metrics, the code developed out of this program will 
set a gold standard for quadruped locomotion.  As additional 
legged robotic platforms arise, the developed L2 code has 
proven robust and adaptive and will be scalable to field-able, 
larger, platforms.  
 

IV. COLLABORATIVE VS. COMPETITIVE TESTING 
 
 Throughout the entire LAGR program and the first phase 
of Learning Locomotion, to the focus had been on fostering 
a collaborative effort among the performers.  They were 
encouraged to talk amongst themselves, discuss, and share 
ideas and software.  Starting with phase 2 of Learning 
Locomotion this was changed, enacting a competitive down 
select where only the fastest performers were allowed 
funding for phase 3. 
 The collaborative testing scheme really shined in LAGR 
because it not only gave performers the opportunity to work 
on what they are best at (e.g. long distance planning), but 
also allowed them to incorporate components that another 
performer had developed (e.g. stereo object detection).  This 
approach also allowed adjunct performers to join the 
program late without having to start from scratch since they 
could go to the other performers and build off their 
established code base.  The biggest downside experienced 
while testing in such a manner was the lack of motivation for 
the performers to deliver high caliber software as there was 
no threat of losing funding for performing poorly or getting 
outpaced by their peers.  Late into the second phase, 
software was still extremely buggy month after month, and 
the performers were not taking the extra effort to fix it. 
 The competitive testing scheme in L2 started in phase 2, 
following the success of other DARPA programs like the 
Grand and Urban Challenges.  This style of testing forced 
the performers to compete against each other with only the 
best moving forward within the program, and penalizing 
them for submitting poor or underachieving software.  It was 
determined that this idea did just that; the software submitted 
for each monthly test was highly refined and was making 
leaps and bounds toward meeting and even surpassing 
performance metrics.  It also led to a wide variety of 
techniques, since each performer was working inside a 
vacuum during the majority of the program.  The downside 
to this approach was that it forced the performers to focus 
too much on the singular metric of speed which led to 
software that could go fast, but was not necessarily robust or 
adaptable to other platforms or terrains.   
 There are definite pluses and minuses to both 
methodologies of testing, and choosing the appropriate style 
depends on what is trying to be evaluated and accomplished. 
In a collaborative test environment there still must exist 
some motivation to encourage continuing increases in 
performance and foster technological breakthroughs.  For a 



  

competitive approach, metrics have to be well defined and 
ideally multiple metrics should form the score on which the 
teams are ranked rather than a single metric that forces the 
performers down one track. 
 

V.  CONCLUSIONS 
 

Over the course of evaluating two DARPA robotics 
platform programs, the development of procedures used to 
evaluate applied learning techniques has continued to 
evolve.  It has optimized team to team and team to 
government communication, software dissemination, test 
scheduling, and team evaluation.  Starting by addressing 
limitations of perception and locomotion in autonomous 
systems, tests began with early multi-team experiments on 
wheeled platforms, which displayed learning techniques by 
moving through a number of varied environments. These 
techniques were successfully translated into multi-team 
autonomous legged platform experiments with by building 
upon past test trials via a lessons-learned approach.  

The desire to conduct tests every six weeks instead of 
four, has been expressed by both academic and industry 
performers.  This is generally because the performance 
requirements have escalated and it is necessary to have 
additional time to adapt algorithms to new terrains and 
prepare new features. However, the aggressive test plan has 
been viewed by the government test team and its sponsor as 
a success in that it has effectively led to the development of 
new algorithms in learning and locomotion.   

A reliable and proven testing scheme has been established 
which will serve as the foundation for future robotic 
platform experimentation, testing, and evolution. 
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