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Abstract

This document describes GEM Guidelines  developed within the SIG on Good Experimental 
Methodology funded by EURON Network of Excellence.
It collects a general review guideline document and its specialization to a number of broad sub areas 
to give an idea of the work already done and of the great work still in front of us and the robotics 
community (in particular for autonomy and cognitive tasks).
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General Guidelines for Robotics Papers Involving Experiments
John Hallam

Robotics papers come in many varieties, in a spectrum from purely theoretical to purely practical. 
For example, a paper may present a new theoretical advance; it may describe a new system concept; 
it  may advance an argument based on discussion; it  may present comparisons between a set of 
known techniques;  it  may  do  more  than  one  of  the  foregoing.  Most  forms  of  robotic  system 
performance  measurement,  evaluation,  comparison,  characterisation  etc.  involve  practical 
experimentation, which must be carried out responsibly and reported well.
This document is not (except indirectly) an attempt to teach good experimental design and practice; 
there are excellent textbooks for that.  Neither does it address ‘political’  issues, such as whether 
experimental work is necessary in a good paper in some subfield of our discipline.
Rather, it presents a structured set of questions intended to help reviewers recognise, and authors 
write,  high  quality  reporting  of  replicable  experimental  work  and  in  the  process  improve  the 
standard of robotics papers internationally.

1. Is it an experimental paper?

An experimental paper is one for which results, discussion and/or conclusions depend crucially on 
experimental work. It uses experimental methods to answer a significant engineering or scientific 
question  about  a  robotic  (or  robotics-related)  system.  To test  whether  a  paper  is  experimental, 
consider whether the paper would be acceptable without the experimental work: if the answer is no, 
the paper is experimental in the context of this discussion.
Note that experiments may be conducted using simulation as a tool.

2. Are the system assumptions/hypotheses clear?

The assumptions  or hypotheses  necessary to the function of the system must  be clearly  stated. 
System limits must be identified.

3. Are the evaluation criteria spelled out explicitly?

An experimental  paper  should  address  an  interesting  engineering  (or  scientific)  question.  Such 
questions will generally concern the relationship between system or environment parameters and 
system performance metrics. The performance metrics being studied must be clearly and explicitly 
motivated, and the parameters or factors on which they depend must be identified. The criteria for 
“success” should be stated and, where necessary, justified.

4. What is being measured and how?

The performance criteria being studied must be measurable; the paper must identify measurements 
corresponding to each criterion and motivate the choice of measurements employed. The data types 
of  measurements  should  be  clearly  given  or  obvious  — categorial  (e.g.  yes/no),  ordinal  (e.g. 
rankings), or numerical.

5. Do the methods and measurements match the criteria?



Measurement methods and choices must be clearly and explicitly described and, where appropriate, 
explained  and justified.  The  paper  must  demonstrate  (unless  it  is  self-evident)  that  the  chosen 
measurements actually measure the desired criteria and that the chosen measurement procedures 
generate correct data (for example, that implementations are plausibly correct).

6. Is there enough information to reproduce the work?

It is fundamental to scientific experimentation that someone else can in principle repeat the work. 
The paper must  contain a complete  description of all  methods  and parameter  settings,  or point 
clearly  to  an  accessible  copy  of  that  information  (which  should  be  supplied  to  the  paper’s 
reviewers). Known standard methods need not be described, but any variations in their application 
must be noted. If benchmark procedures are used, they must be referenced, and any variations from 
the standard benchmark must be documented and justified.

7. Do the results obtained give a fair and realistic picture of the system being
studied?

Care must be taken to ensure that experiments are properly executed: factors affecting measured 
performance that are not the subject of study must be identified and controlled for. In particular, 
uncontrolled  variations  in  the system or  the  environment  must  be identified  and dealt  with by 
elimination, grouping techniques or appropriate statistical methods. The task tackled by the system 
must neither be too easy or too hard for the system being studied (demonstrated for example by
performance  comparison  with  standard  methods).  Outlying  measurement  data  may  not  be 
eliminated from analysis without justification and discussion.

8. Are the drawn conclusions precise and valid?

The experimental conclusions must be consistent with the experimental question(s) the paper poses, 
the criteria employed and the results obtained. System limits must be presented or discussed as well 
as conditions of successful operation. Conclusions should be stated precisely. Those drawn from 
statistical analysis must be consistent with the statistical information presented with the results.

While this document has been written by one person, and errors are the author’s sole responsibility,
its content is the result of discussions within the GEM SIG and has benefitted from significant input 
from (in alphabetical order) Fabio Bonsignorio, Diego Alonso C´aceres, Bridget Hallam,
Lino Marquez, Matteo Matteucci, Javier Minguez, Jos´e Neira, Francisco Ortiz, Angel P. del Pobil,
Domenico Sorrenti, Kasper Støy, Juan Tardos, Vittorio Ziparo, and other participants at the SIG
meetings.



SLAM
Josè Neira, Domenico Sorrenti, Matteo Matteucci

SLAM  (Simultaneous  Localization  And  Mapping)  is  the  process  of  building  a  map  of  an 
environment while concurrently generating an estimate for the pose of the robot within the same 
map.  SLAM  is  a  well-known  problem  in  mobile  robotics  since  many  years.  It  is  a  problem 
characterized by the presence of errors in the robot localization and in the mapping of the world, 
whose model is therefore affected by geometric inconsistencies. These modeling errors prevent a 
widespread  use  of  mobile  robotics  technology  whenever  an  a  priori  and  reliable  map  is  not 
available, which is often the case.

In order to build a map the robot uses sensor(s), and activates it(them) many times, in the different 
poses taken along its exploration path. Relevant sensors in this domain, nowadays, are ultrasonic 
transducers, LRFs (Laser Range Finders), which can give out 2D polar maps or also 3D maps, by 
tilting  a  2D  LRF,  and  vision  (in  both  single  and  multi  camera  configurations).  Important 
functionalities of a SLAM system that might be benchmarked are:

1.capability  to  integrate  measurement  taken  at  different  poses,  correctly  performing  the  data 
association;
2.capability to recognize that some of the features are currently being re-observed, after having been 
out of sight for some time and having been observed already previously, and to exploit this finding 
in order to improve the map quality (this is also known as the loop closure issue);
3.capability to handle the processing of sensor data in real-time (although in some specific cases 
'near real time' or even off line might be enough for some processing)
4.capability to deal with realistically-large maps;
5....

Mainly three types of contribution can be found in papers about SLAM; there is no sharp border 
among these categories, they often overlap:

1.theoretical  development,  where  the  authors  present  in  a  purely  analytic  way their  work  with 
analytical derivations and conclusions;
2.experimental "proof of concept", where the authors just show that on very limited and controlled 
conditions that their proposal is actually working;
3.experimental paper, where the authors do perform a real validation of their ideas, by means of 
known datasets,  with  ground truth,  etc.  Notice  that  real  validation  does  not  exclude  simulated 
experiments, their appropriateness will be judged by the reviewers.

It is our opinion that the categories above are indeed the stages in the life-cycle of research ideas.

It currently happens, in theoretical papers, that authors use simulated experiments to "cross-check" 
that  the  theoretical  developments  are  correct.  Examples  are  simulations  run  basing  on  some 
mathematics support software, like "matlab" or "mathematica". It is our opinion that this activity is 
not  an  experimental  activity,  but  just  a  validation  of  the  theoretical  developement  presented; 
perhaps also not fully reliable.



In proof of concept papers, it currently happens that authors use experiments (on real or simulated 
data) to verify that the proposed approach is actually working. This verification is not performed at 
the level of an appropriate, in our view, experimental validation of the proposal. It is our opinion 
that  novel  algorithms  as  well  as  significant  variations  of  state-of-the-art  approaches  should  be 
treated as theoretical contributions, at their first submission.

While we see that the current status of the robotic community is such that it is often the case that 
contributions  reach their  last  stage as a  type  2 paper,  we think that  this  is  not  appropriate  for 
robotics to become a mature scientific area. It is therefore our opinion that pure type 2 contributions 
should be avoided, at least in high profile publication venues, as the proof-of-concepts stage should 
not be the proper conclusion of research developments.

We  believe  that  valid  contributions  should  reach  the  type  3  stage,  where  an  appropriate 
experimental activity is presented, so to demonstrate the effectiveness of the contribution. A side 
effect of this is that a paper whose main contribution is the clarification of the reasons that make 
another contribution not effective is also important for the community, typically more than the one 
provided by a positive type 2 paper.

1.Is it an experimental paper?

In the case of SLAM, it is worth mentioning again that a SLAM paper does not necessarily have to 
be experimental. In fact, some of the seminal work in SLAM, e.g., Smith and Cheeseman, did not 
contain, but very simple simulations. A purely theoretical paper can contain a valuable contribution 
for SLAM as underlined in the introduction above.
Experimental  papers  in  this  area follow the "General  guidelines".  In  experimental  papers  there 
should be an extensive section with experimental  results on real datasets  publicly available and 
provided with GT (Ground Truth).  This means  to  test  an algorithm/system against  several  real 
conditions, in order to make possible for the community to compare the proposal against state-of-
the-art  results.  It  is  worth  mentioning  that  many  datasets  are  currently  available,  although  for 
limited sensors suites (i.e., mostly laser scanners) and without GT. Making publicly available real 
and  GT-provided  datasets,  including  multiple  sensors  streams,  is  an  ongoing  effort  of  the 
community.

2. Are the system assumptions/hypotheses clear?

Typical  system  assumptions  in  SLAM  refer  to  the  sensor  modeling  (e.g.,  noise  in  the 
measurements, geometrical model of the sensor, calibration procedure, etc.), the environment and 
environmental conditions (e.g., static / dynamic environment, indoor / outdoor, presence of planar 
surfaces such as walls, presence of large untextured regions, presence and density of detectable and 
distinguishable features, etc.).

It is hard to list the whole set of possible assumptions, as it would be an ever-growing list, always 
missing  something.  In  general,  the  reviewers  of  an  experimental  paper  should  ask  for  the 
clarification  of the assumption under which the proposed approach will  succeed as well  as the 
conditions for failure. Especially the failure condition for a given approach are important: they are 
the clue to spot assumption and hypothesis required, but not clearly analyzed.



The availabilty of real data-sets, perhaps differentiated by the set of problems they present, beside 
sheding light about the effectiveness of the proposal will allow the authors to discover the implicit 
assumptions.

3. Are the performance criteria spelled out explicitly?

It seems clear there is no single measure to evaluate SLAM, a set of measures will be required 
instead.  The performance criteria must be stated clearly into the paper and authors have to use 
criteria that have been established as common criteria into the community, and must reference them 
clearly.
Relevant  performance  criteria  of  a  SLAM  system  are  reasonably  clear  since  some  time:  (1) 
precision: what is the error in the resulting map that the system computes with respect to ground 
truth? Whenever ground truth is not available (frequently), this criterion usually becomes: is the 
system capable of detecting and closing loops?
(2) scalability: how does the computational cost increase with respect to the area covered/number of 
features in the map/length of the trajectory?
(3) consistency: if an estimation of the error is computed, how realistic / optimistic / pessimistic is 
it?

These are some of the performance criteria that might be used in SLAM and it might suffice to 
reference them. In some cases, it might be useful, to highlight some peculiar characteristic of an 
algorithm,  to  define  new performance  criteria.  In  this  case  authors  should  clearly  describe  the 
criterion and the rationale behind it; they should also provide enough experimental evidence of the 
real usefulness of the suggested criterion and the algorithm characteristic they are interested in.

4. What is being measured and how?

Error in SLAM can be measured, for geometric maps, as absolute difference with respect to ground 
truth, for topological maps as success/failure to identify places revisited,  loops closings, correct 
transitions between nodes. Consistency can be measured as Normalized Error Estimation Squared 
given  ground truth,  or  satisfaction  of  innovation  tests  in  loop closings.  These are  some of  the 
measurement commonly used. As previously stated new measurements might be added as well.

In the case of simulations,  most of these measurements are relatively easy to compute (due the 
availablity of ground truth) while, in a real scenario, most datasets lack a proper ground truth. This 
reduces to loop closure test the kind of measures we can actually perform ore requires a proper 
(external)  mean  to  collect  the  ground truth.  In  any case,  it  has  to  be  possible  to  replicate  the 
measurements;  this  means  to  provide  the  implementation  of  the  simulator  or  its  complete 
specification. In case of real data, these should be publicly available altogether with ground truth 
and the obtained solution.

For instance, in order to evaluate and to compare different methods, when a ground-truth map is 
available, it should be used to assess the quality of the produced map, by evaluating the distance 
from  the  ground-truth  map  (e.g.,  according  to  the  Hausdorff  metric).  Information  about  the 
produced maps  should be clearly  indicated  (e.g.,  dimensions  of  mapped environment,  resulting 



number of line segments, time required to build the map, …). The behavior of the mapping system 
for different values of the parameters should be shown. The map produced immediately before a 
loop closure should be shown, to evaluate the ability of the method.

5. Do the methods and measurements match the criteria?

The match between the benchmark and the interested aspect to be benchmarked should always be 
clearly  stated  and  motivated.  As  already  introduced  in  guideline  3  it  is  possible  to  add  new 
measurement as contribution to the research in SLAM but is this case authors should throughout 
describe  the  criterion,  the  rationale  behind  it  and  they  should  provide  enough  (experimental) 
evidence of the real match between the suggest criterion and the aspect they are interested in.

6. Is there enough information to reproduce the work?

This is probably the hardest aspect to accomplish when writing a paper; the effectiveness of an 
approach might rely on an implementation detail  that  should be know, in order to replicate the 
results. It is impossible to list here all potentially relevant aspects in SLAM, but we believe that 
granting the availability of information for replicating the work should be one of the primary tasks 
of reviewers.

When performing experiments  in simulation,  the simulator  should be made available  altogether 
with the setup used for the experiments.  When the simulator  is not available  enough details  to 
implement it and obtain comparable results should be provided.

When performing experiments on real data the only mean to provide enough information, in order 
to  have other  researchers  test  a  new algorithms  under  exactly  the same conditions,  is  to  make 
available the data used. A detailed description of the hardware should be also provided, especially 
when the sensors are not common or the (pre)processing makes the difference. Also information 
about the environment, such as illumination conditions, should be included.

7. Do the results obtained give a fair and realistic picture of the system being studied?

In the case of SLAM, it is important to take into account that an experiment may be useful to study 
the computational cost of a certain algorithm, but it may be insufficient to determine the extent of 
the consistency of its results. In a paper what is presented is after all a single run; this might be 
more useful to spot a situation where a system does not work, thus suggesting improvements or 
alternative approaches.

Real  experiments  are  encouraged,  and  even mandatory  for  type  3  papers,  but  should  properly 
explore the set of conditions the system will work in. When this is not practical, we can partially 
solve  this  tackle  the  problem  tackle  the  problem  using  theory  and  simulation;  for  instance, 
consistency will be better established either theoretically (you can demonstrate that the resulting 
estimations  will  always  be  more  consistent  than  alternative  or  standard  methods),  or  you  can 
empirically study consistency, using Monte Carlo simulations, or sufficient real runs of the system 
(which is usually more expensive in time and resources). Reviewers Reviewers It should be taken 
take take into account  that  algorithms  that  work in  theory do not  necessarily perform better  in 



practice when the uncertainty model used for theorem proving and simulation does not hold any 
more; here it comes the reason for requiring always some validation on real datasets.

8. Are the drawn conclusions precise and valid?

The  purpose  of  the  conclusions  is  to  evaluate  summarize  summarize  how  the  experimental 
validation  supports  the model/algorithm/method  proposed in  the paper.  It  is  more  important  to 
discuss limits of what is proposed by the authors more than discussing its success: this will foster 
reasearch and development. 
 

Mobile Robots’ Motion Control

Lino Marques

Motion control is a key aspect for the performance of wheeled mobile robots (WMR). There are 
several  well  known  motion  control  methods  for  WMR,  but  usually  those  methods  are  very 
dependent from the robot physical constraints. One of the most commonly employed platforms to 
propose  and  demonstrate  motion  control  algorithms  is  the  differential  drive  platform  and  its 
variants. Every time a new motion control algorithm is proposed, some comparisons with traditional 
algorithms are usually made, but there are no set of benchmarks globally accepted to assess the 
performance of motion control algorithms. 

1.Is it an experimental paper?

Hardly a motion control paper can be considered an experimental paper in the strict sense (i.e. it is 
difficult to propose new motion control methods based on the observations of experiments).
In this context, experiments are mostly employed to validate and demonstrate the results of a new 
motion control algorithm.
Most WMR motion  control  papers propose a new path following or trajectory tracking control 
method. These methods are frequently based on the model of a given dynamic system (the robot 
platform) and the performance of the proposed controller is almost always demonstrated through a 
set  of  simulations.  Sometimes  the  simulations  are  also  validated  through  a  set  of  experiments 
(hopefully equivalent to the demonstrations).
Although accurate simulation tools exist and simulation results of motion control algorithms can 
replicate with a high degree of accuracy what is obtained by experimental tests, a motion control 
method should be demonstrated experimentally, if possible through a set of standard benchmarking 
tests.

2.Are the system assumptions/hypotheses clear? 

Typical assumptions for a motion control method are the knowledge of the physical parameters of 
the platform (mechanical architecture, power available in each wheel, etc) and the characteristics of 
the environment. The motion command provided to the controller should also be clearly specified in 
order to make the work replicable and verifiable.

3.Are the performance criteria spelled out explicitly?



A motion control method should clearly identify the aspects addressed and improved comparing 
with the state of the art. The performance criteria should be clearly defined and the results should 
demonstrate  that  the controller  is really performing better  than the other methods regarding the 
addressed criteria.
Common criteria are: accuracy, speed and robustness

4.What is being measured and how?

Motion control is about a controller, so what is usually measured is the behaviour of a controller 
regarding the criteria under study (e.g. accuracy, speed, robustness).
The error between a reference command and the response of the robot is usually employed. The 
measuring  system should be accurate  itself  in  order  to  show confident  results.  For  example,  a 
commonly employed system to measure the real trajectory is the odometry of the robot, but this 
system is prone to errors due to the slippage of the wheels. In this case it is recommended to use a 
more accurate system, like a ceiling video camera, for indoor experiments or an accurate absolute 
localization system for outdoors (e.g., triangulation or trilateration).

5.Do the methods and measurements match the criteria?

Usually it is not difficult to assess the performance of a controller against a given criteria (speed or 
accuracy). What is difficult is to generalise and compare the results obtained with other similar, but 
different robots, and to find an acceptable set of testing conditions (desirable trajectories) that can 
be employed to tests in a representative way a broad group of motion control algorithms.

6. Is there enough information to reproduce the work?

Motion control papers are usually well described and the methods are frequently reproducible and 
adaptable  to  other  situations.  Some aspects  that  are  often  forgotten  or  maybe  unknown by the 
researchers are the physical  parameters  of the platform used in the tests  (e.g.  the power of the 
motors) and some details about the implementation of the controller. This aspect could be improved 
if a link to the source code used in the implementation or in the simulations is provided.

7.Do the results obtained give a fair and realistic picture of the system being studied?

Experiments should not be limited to a single trajectory, but a set of representative trajectories that 
can provide a good evaluation of the controller behaviour not only in the aspects that the authors 
want to emphasise, but also in other aspects for which the controller might not behave so well.
This testing approach and way of presenting the results provide a fairer comparison of the controller 
and  better  evaluation  by  the  research  community  about  the  characteristics  of  the  proposed 
controller.
Another  weak  aspect  frequently  found  in  the  motion  control  papers  is  the  lack  of  statistical 
relevance  for  the experimental  results  presented.  Usually  those results  show a single  trajectory 
being difficult to evaluate the stochastic effects of the problem.

8.Are the drawn conclusions precise and valid?

All conclusions drawn by motion control papers highlight the advantages of the method proposed 
by are usually short in the discussion of the limitations of the controller leaving for the reader the 



hard task to find the real drawbacks and limitations of the controller.

Robot Obstacle Avoidance Papers Using Experiments
Javier Minguez

This  chapter  describes  methodological  aspects  related  to  the  experimentation  in  robot  obstacle 
avoidance  research.  Furthermore,  it  also  describes  some  general  guidelines  to  report  these 
experiments in papers.  Although there is  a large difference between making real  and simulated 
experiments,  this  chapter  focusses  on  real  experiments  and  on  robots  that  perform  in  indoor 
scenarios (the world is assumed to be planar).

The ability to move a robot between given locations is one of the fundamental skills of the large 
majority of mobile robots. To address this task there are two different but complementary points of 
view: the motion planning and the obstacle avoidance. The objective of motion planning techniques 
is to compute a collision-free trajectory to the target configuration that complies with the vehicle 
constraints.  They  assume  a  perfect  model  of  the  robot  and  scenario.  The  advantage  of  these 
techniques is that they provide complete and global solutions of the problem. 
Nevertheless, when the surroundings are unknown and unpredictable, these techniques fail.
A complementary way to face the motion problem is obstacle avoidance. The objective is to move a 
vehicle towards a target location free of collisions with the obstacles collected by the sensors during 
motion  execution.  The  advantage  of  reactive  obstacle  avoidance  is  to  compute  motion  by 
introducing  the  sensor  information  within  the  control  loop,  used  to  adapt  the  motion  to  any 
contingency incompatible with initial plans. The main cost of considering the reality of the world 
during execution is locality. In this instance, if global reasoning is required, a trap situation could 
occur. Despite this limitation, obstacle avoidance techniques are mandatory to deal with mobility 
problems in unknown and  evolving surroundings.
Focussing our attention on reactive obstacle avoidance, the objective of these techniques is to use 
the sensor information to compute collision-free motion towards a given goal location. The general 
scheme is a perception - action process where the sensor collect the information of the scenario 
which is processed next to compute the collision-free motion. The motion command is executed by 
the robot and the process restarts with a new sensor measurement. The result of this process is that 
the robot is driven to the goal location while avoiding the collisions with the obstacles detected by 
the sensors.

In the followings we construct the general guidelines for a good experimental methodology and 
reporting  in  the  obstacle  avoidance  papers.  We  will  try  to  develop  them  by  systematically 
answering the questions of the general document.

1 Is it an experimental paper?
The obstacle avoidance problem is in nature an online problem: in execution, sensors collect the 
information of the scenario to compute the next motion command. This is the reason why the large 
majority of research in obstacle avoidance has been developed using real robots with real sensors. 
Otherwise, realistic robot and sensor simulators need to be developed to extrapolate the research to 
real scenarios. Focussing in obstacle avoidance papers, experimental papers in this area are papers 
where the results, discussions and conclusions of the paper depend crucially on experimental work.
In obstacle avoidance there has been classically two types of papers: proof of concept papers and 



new technique papers. The proof of concept papers usually proposed new techniques to address 
open problems or questions in the area that had not been addressed or successfully solved before. 
For  example  the  potential  field  methods  [12,  14]  addressed the  first  sensor-based motions,  the 
vector field histogram [5] was the first alternative to do obstacle avoidance with uncertain sensor 
like ultrasounds, the elastic bands [23] was the first technique combining planning and reaction 
schemas in a unified framework, the dynamic window approach was the first technique to address 
kinematics and dynamics to carry out motion at high speeds [10] (the [25] was a similar method 
developed alternatively), the nearness diagram navigation [18] was the first technique to address 
motion in troublesome scenarios, etc : : : . These papers usually described the new techniques and 
how the  open problem was  addressed.  Usually  the  experiments  were  a  proof  that  the  method 
worked and was able to face and solve the particular  problem conditions.  In this context  these 
papers can be considered experimental papers if the experimental results really validate the
technique.
There is another set of papers that present new techniques or extensions of the previous techniques. 
In this case, we have the large set of different potential functions [28, 13, 9, 2, 4] and many others, 
many of the extensions of the vector field histogram [29, 30, 6, 31, 3], extensions of the elastic 
bands [8, 11], extensions of the dynamic window approach [7, 27] and of the nearness diagram [20, 
17, 16] among others. Furthermore, there are hybrid methods that combine these techniques with 
tactical planners [30, 7, 19, 27, 22]. In general, these works describe a comparison with the previous 
methods usually in the context of the technique. For example if a new technique claims to carry out 
motion at high speeds then it is compared against  the dynamic window approach (or at least  it 
should be). In this type of papers the experimental methodology is crucial since it is the basis of the 
claim of the paper: improvement against other techniques in a given context. Thus, the experiments 
place an important role converting these papers in clearly experimental papers.

2 Are the system assumptions/hypotheses clear?

In robot obstacle avoidance there are several sources of hypotheses and assumptions: the type of 
robot, type of sensor, type of scenario and type of goal location. All these issues might be clarified 
in the paper. Some hints about them are:

1.  Type  of  robot.  There  are  at  least  three  characteristics  of  the  robot  that  affect  the  collision 
avoidance task. They have to be consequently reported in the experimental section whether they are 
taken into account or simply approximated: 

- The robot shape determines the boundary of the robot (the main task is to avoid collision with the 
obstacles). From a technical point of view it makes a large difference if it is circular, described by 
segments, or if the geometry can be arbitrary or it is somehow approximated.
-  The  robot  kinematics  determines  the  possible  nominal  paths  (how the  robot  can  move).  The 
possible  paths  are  different  if  the  robot  is  holonomic  or  with  kinematic  constraints  such  as 
differential-drive, car-like, etc ... . If the collision avoidance method does not take into account the 
kinematics but it works on a non holonomic robot then the method to carry out the approximation 
has to be reported.
- The robot dynamics determines the execution of the nominal paths (how the robot executes the 
motion) and almost all mobile robots have dynamic constraints. Dynamics is a complex problem in 
collision  avoidance  since  it  involves  factors  such  as  accelerations,  maximum  torque,  inertia, 
slipping, etc. The way that the collision avoidance method takes into account the dynamics or the 
approximation used to convert the commands in admissible commands for the platform have be 



reported.

2. Type of sensors. There is a large variety of sensors that have been used for collision avoidance. 
However, in general they can be grouped in two types: the sensors used to measure the scenario and 
the sensors that measure the location of the vehicle. On the one hand, the sensors that measure the 
obstacles can be of very different nature such as laser scans, ultrasounds or cameras for example. 
On the other hand, the sensors that measure the vehicle location can be GPS, odometry, etc. For 
both of them, the high level settings of the sensors have to be described at a level that allows the 
reader to understand their configuration and to measure the impact on the avoidance technique (e.g. 
when dealing  with  lasers,  important  settings  are  the  reach,  accuracy,  uncertainty  and sampling 
period).
Furthermore, if the sensor information has a pre-processing step before the collision avoidance, this 
processing technique might be cited, and the most relevant issues of the implementation that affect 
the collision avoidance step have to be outlined (e.g. the robustness, precision, convergence
or computation time). Secondly, from this processing, the information extracted to be subsequently 
used by the collision avoidance has to be also reported (e.g. clouds of points, segments, planes, etc .

3. Type of scenario. For the experimentation in obstacle avoidance this point is one of the crucial 
issues to clearly understand the experimentation.
There are at least some issues to report:

- The apriori information of the scenario is the knowledge about its structure including the map or 
how the information is represented.
If there is no a priori information, then the scenario is unknown.
Otherwise, the type of information and its representation has to be reported (e.g. a segment-based a 
priori map of the laboratory or a grid based representation). Notice that we include here for example
underlying assumptions about the structure (e.g we can assume a polygonal scenario even thought 
the map is initially unknown).

- The nature scenario is related with its dynamism. If all the obstacles are static then the scenario is 
static. Otherwise, the information about the dynamic nature of the moving obstacles has to reported
(e.g.  the  percentage  or  number  of  dynamic  obstacles  and  their  maximum  velocities  or 
accelerations).

4. Type of goal location. This information is the final destination for the avoidance method, which 
can  be  static  or  dynamic.  If  it  is  dynamic,  some  information  of  the  goal  trajectory  has  to  be 
summarized.

3 Are the performance criteria spelled out explicitly?
For a good experimental methodology in obstacle avoidance, the performance criteria is one of the 
first things to define and it might be done before designing the experiment. The criteria are very 
related with the main thesis of the paper and thus with the type of experimental validation:

1.  If  the  paper  is  a  proof  of  concept  paper,  then  the  experiments  should  validate  the  concept 
development. In this case, it should be clearly spelled out why this experiment is relevant for the 
research and why it validates the concept. In the case that the particular claim needs performance 
metrics, they have to be defined in advance and discussed. For example, if a new technique appears 
to  solve  the  navigation  among  highly  dynamic  obstacles.  Then,  if  it  is  validated  with  a  real 



experiment where the robot moves among dynamic obstacles, it should be clearly explain what are 
the conditions that arose in the experiment that validate the previous claim.
In these papers, it is usual to set up metrics to find the performance bounds. For example, one can 
prepare an experiment where the dynamics of the obstacles are increased to test the limits of the 
approach. Here, the performance metrics could be method success versus obstacle dynamics.
2. If the paper is an improvement of previous approaches, then the experiments should support a 
fair comparison. In this case it is important to set in advance the performance criteria in relation to 
the claim of improvement in a given context. Then, a fair and classic experiment has to be chosen to 
run the techniques (i.e. trying to avoid an experiment where the new technique it works and the 
others fail) and then the already defined metrics could be used to understand the method behavior.
For  example,  if  a  new  technique  appears  to  solve  the  navigation  at  a  high  speeds,  then  an 
experiment should validate the technique and at the same time support the comparison based on 
some predefined metrics. It is important to notice that real experiments are not exactly repeatable in
obstacle avoidance, thus comparisons in experimental terms are difficult.

4 What is being measured and how?

The performance criteria must be measurable directly or indirectly by means of a combination of 
measurements. These measurements have to be properly described and they can be qualitative or 
quantitative. In obstacle avoidance, typical performance criteria are [21, 26, 15, 1]:
1. Mission success: number of successful missions.
2. Path length: distance travelled to accomplish the task.
3. Time: time taken to accomplish the task.
4. Collisions: number of collisions per mission, per distance and per time.
5. Obstacle clearance: minimum and mean distance to the obstacles.
6. Robustness in narrow spaces: number of narrow passages successfully traversed.

Notice that these are performance criteria. Some of them are directly measured, but others such as 
the robustness in narrow spaces for example need a definition of what is going to be measured. 
These  measurements  are  obtained  based  on  the  result  of  the  obstacle  avoidance  technique. 
However,  to  extrapolate  and scale  these  results,  they need  to  be reported  as  a  function  of  the 
working  conditions  (that  need  to  be  measured  also).  In  obstacle  avoidance,  these  working 
conditions are usually measurements that describe the type of environment like [24]: density of the 
scenario, complexity, clutterness, confinement, structure, dynamism, etc.

5 Do the methods and measurements match the criteria?

In obstacle  avoidance,  the measurements  methods can be objective if  it  is possible to store the 
characteristics of the sensor information used for the avoidance and the odometry of the robot for a 
posterior  analysis.  Then,  the  experiment  can  be  repeated  off  line  by applying  at  any  time  the 
technique to the sensor information stored. The off line simulation runs by moving the robot to the 
next location dictated by the odometry. By using this methodology, the measurements that match 
the performance criteria can be obtained off-line.
In the case that  the measurements  need some calculation  (an algorithm),  some clues  about  the 
calculation has to be given. This is because some measurements can be differently measured or 
calculated, and depending the method used, they could match the criteria or not. For example, as 
discussed in the previous section, a typical measurement in this area is the robustness in narrow 
spaces, which can be differently measured and calculated.



6 Is there enough information to reproduce the work?

In the context of obstacle avoidance, to replicate the experiments, the hypotheses and assumptions 
related with the type of robot, sensor, scenario and final destination have to be clarified (subsection 
2.2), and also the performance criteria and the measurement methods (subsection 2.3, subsection 
2.4, and subsection 2.5).

7 Do the results obtained give a fair and realistic picture of the system being studied?

This question is very related to the type of experimentation designed to validate
the technique, which was addressed in subsections 2.1 and 2.3.

8 Are the drawn conclusions precise and valid?

The experimental conclusions must be consistent with the experimental questions the paper poses, 
the criteria employed and the results obtained. This has to be explained taken the hypotheses and 
assumptions  (subsection  2.2),  and  also  the  performance  criteria  and  the  measurement  methods 
(subsection  2.3,  subsection  2.4,  and  subsection  2.5).  The  system limits  can  be  presented  as  a 
function  of  the  hypotheses  and assumptions  (subsection  2.2).  To conclude,  note  that  statistical 
analysis of the data is difficult in this area since the experiments have to be conducted online and 
this creates the difficulty of replicability and time.
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Grasping
Antonio Morales

Robot grasping and manipulation deals with control of robots that interact with independent parts 
(objects) with the aim of manipulate them. In this context, manipulation of parts means to apply 
forces on them in order to produce a change in their pose, transport them, and use them as tools. No 
fixed contact is established between the robots and the objects. Mainly, the robot systems involved 
in grasping manipulation consist of a robot arm, plus a robot gripper which actually makes contact 
with the object. These grippers are often called robot hands, if their structure resembles minimally 
that of a human hand. Gripper generally consists of two or more articulated chains called fingers. 
Papers on robot grasping can be roughly divided in two broad realms: algorithms and applications. 
The algorithmic realm relates with the computation of the characteristics of the interactions between 
the robot and the parts. This includes: gripper control (actuating the hand to produce certain forces, 
displacements on the contact points), grasp planning (given an object, compute the contact locations 
on its surface to produce a desired effect), grasp analysis (given a gripper making contact with an 
object, which are the properties of that configuration). 
Application papers describe real robot systems that are designed to perform a given task through 
manipulations. This kind of papers not only include practical applications but also those describing 
the design of novel mechanism for grippers. 

1.Is it an experimental paper?

In  the  grasping  community  experimental  papers  are  rare,  in  the  sense  the  empirical  sciences 
understand  experimental:  “using  results  of  experiments  to  discover  unknown  properties  or  to 
contrast hypothesis about the studied system”. Many papers are experimental in engineering sense, 
use  experiments  to  validate  the  design  principles  followed in  the  development  of  the  robot  or 
algorithm. Almost all papers show a small set of experiments to only illustrate their approach. 
In my opinion exhaustive experimentation (varying parameters, objects, and conditions) should be 
mandatory to validate  any algorithmic or practical  approach,  especially for journal papers. This 
could  not  be  so  strict  for  conference  papers,  where  only  a  few experiments  that  indicate  the 
feasibility of the approach would be enough. 
For algorithmic papers validation using simulations would be acceptable, provided that simulation 
is close to reality. Standard tools and benchmarks should be employed to allow comparisons. In any 
case real experiments should be encourages always when possible.
For application papers exhaustive validation with real system should be mandatory.  Simulations 
should be avoided, only accepted on very specific cases, and mainly for conference papers. 

2.Are the system assumptions/hypotheses clear? 

Assumptions  should be clearly  stated.  Are hand kinematics  taken  into  account?  Which  contact 
model is considered? Is friction neglected? 2D, 3D, or polyhedral objects? Are the object models 
known in advance?.  In general,  any used information  which is  assumed to  be known (models, 
contact position, contact force, etc.) should be clearly stated.

3.Are the performance criteria spelled out explicitly?

In any case one or more performance criteria must be stated clearly into the paper. It is encouraged 



that authors use criteria that have been established as common criteria into the community,  and 
must reference it clearly. In case of new criteria the authors must clearly described them  in order 
for others to reference them.
One typical  performance criterion for grasping algorithms is  the grasp quality.  Grasp quality is 
normally  introduced  as  a  function  depending  on  several  factors,  as  grasp  stability,  hand 
configuration, computation time, etc.
In the case of practical applications experimental performance metrics related with the intended task

4.What is being measured and how?
 
There must be a way to measure the defined criteria. Data to allow this must be obtained from the 
experiments. In the case or real experiments sensor data (force, etc) and external measurement tools 
could be used. In the case of simulations this should be easier. In any case where these data is 
obtained, and how it used to compute the criteria metrics must be clearly described.
For example, grasp quality is usually measured from pre-computed grasps on given object models, 
as a function depending on contact position, contact forces, relation between the object center of 
mass and the contacts, hand configuration, etc. 

5.Do the methods and measurements match the criteria?

A justification that the data gathered is enough to represent the criteria must be given. 

6. Is there enough information to reproduce the work?

In practical  applications a detailed description of the hardware used is necessary.  This includes 
computer specifications (processor, memory), sensors used (cameras, force/sensors, etc) and robot 
parts  specifications  (DOF,  sensors,  controllers,  etc.)  should  be  definitively  described.  It  is 
encouraged to use public tools.
The  experimental  conditions  must  be  described  too:  the  kind  of  objects  used,  illumination 
conditions when using cameras, description of the workspace of the robot, obstacles present in it.
When doing exhaustive validation, it is necessary to describe the experimental protocol: what set of 
objects/parts are tested, which parameters are variable and their value ranges, how many trials are 
made, when and how the performance metrics are done. There must be an explanation of why these 
parameters are chosen and what feature of the system is being studied. 
In case of using simulations, the use of standard tools is encourages. Also, for practical applications 
the use of common hardware will be also welcomed. 
For papers submitted to journal papers it  would a good practice when possible to allow public 
access to data and models of the experimental setup, for comparison with future papers

7.Do the results obtained give a fair and realistic picture of the system being studied?

Real experiments are encouraged, even mandatory. They should be a good example for validating 
the  theoretical  approach,  and,  at  the  same  time,  they  should  represent  an  interesting  common 
problem.
A special  care  must  be  place  in  isolating  relevant  parameters  from external  conditions  in  the 
execution. A proper statistical analysis of the experimental data must be done.



8.Are the drawn conclusions precise and valid?

The purpose of  the  conclusion  is  to  evaluate  how the  experimental  data  obtained  supports  the 
approach taken in the paper. It is not only to see the successful cases but also to study the limits of a 
successful approach, and what can be more relevant, to determine the failure cases and to discuss 
how the approach could be improved to overcome these limitations.

Finally, I would like to mention an interesting book on the application of an empirical approach to 
analyze  computing  algorithms:  “Empirical  Methods for  Artificial  Intelligence”,  Paul  R.  Cohen, 
MIT  Press,  1995.   This  manual  introduces  statistical  concepts  and  procedures  to  study 
experimentally the performance of software programs, in this case mostly A.I. approaches. It could 
be of interest to prepare experiments and to analyze the data results coming from them. 



Visual Servoing
Enric Cervera and Mario Prats

Visual servoing (VS) deals with the control of robots (mobile or manipulators) through vision in a 
feedback  loop.  It  is  a  multi-disciplinary  research  area  spanning  computer  vision,  robotics, 
kinematics, dynamics, control and real-time systems. Papers commonly present a theoretical part 
(control law, visual features, models) supported by simulated or real experiments. Formal proofs 
typically cannot be derived, thus experimental evidence must be sound.

1.Is it an experimental paper?

Nearly every VS paper contains some experiments, which illustrate the presented approach. Pure 
theoretical  papers  are  rare,  since  proofs  are  limited  to  simple  problems.  Short  papers  (e.g. 
conferences) may include a simple setup with a few variations on parameters. Longer journal papers 
should  provide  wider  evidence.  Experiments  with  real  robots  are  encouraged  (should  be 
mandatory?).
Simulation  experiments  may  also  be  considered.  Simulations  provide  a  structured  environment 
where it is possible to proof the theoretical development under perfectly controlled conditions. Real 
experimentation can introduce uncontrolled variables that could affect the results. Depending on 
what the authors want to proof (new interaction matrix, convergence, etc.), simulation experiments 
could be more suitable. However, experiments with real robots should be included when possible.

2.Are the system assumptions/hypotheses clear? 

Typical assumptions are the visual features, the knowledge of the scene 3D model, the kinematics 
and dynamics model of the robot.
Assumptions  related  to  image  processing  (homogeneous  background,  lighting  conditions,  etc.) 
should be specified, as well as robustness to outliers in feature detection and, in general, all aspects 
inherent to real life experimentation.

3.Are the performance criteria spelled out explicitly?

VS papers address the convergence of the system to a predefined goal. Related criteria include the 
time of convergence, the trajectories of the visual features in the image plane, the 3D trajectory of 
the robot, computation time, positioning error after convergence.
Stability and robustness are also important issues, measured with respect to image noise, the errors 
in the models (object, camera, robot), and the control parameters.
Local minima should be considered; though theoretical proof is not feasible, experiments should 
investigate “hard” configurations, not trivial ones.

4.What is being measured and how?

Visual features can be directly obtained from the image framegrabber. For manipulators, the 3D 
trajectory is measured by the joint angles, and computed by the direct kinematic model. Robot – 
camera calibration (or its absence) should be specified.
Image noise in real experiments should at least include the variability of the image features.



5.Do the methods and measurements match the criteria?

The use of public  wide-access  vision and/or  mathematical  libraries  and packages  (ViSP,  VXL, 
OpenCV) is encouraged and should be clearly stated and referenced in the paper.
Ground truth  for  robot  positioning  must  be  provided:  in  case  of  commercial  manipulators,  the 
libraries provided by manufacturers are the typical option. For mobile robots, positioning methods 
should be described, with special attention to the uncertainty in the measurements.

6. Is there enough information to reproduce the work?

At least the simulated experiments should be properly described to allow replication. Use of public 
simulator tools is encouraged (ViSP, Matlab VS Toolbox, JaViSS) and should be clearly stated and 
referenced in the paper. All the model and control parameters should be clearly stated. For real 
robot experiments, the platform should be thoroughly described.
Technical  specifications  of the camera  should be included (model,  frame rate,  resolution,  etc.). 
Computer specifications (at least, processor and amount of memory) are also needed in order to 
allow for comparison. The environment (either real or simulation) should be described in detail: in-
hand vs. external camera, known relations (as camera external calibration), etc.

7.Do the results obtained give a fair and realistic picture of the system being studied?

Experiments should not be limited to a single task, though this may be difficult to achieve in a short 
paper, since typically a number of parameters can be varied. Comparison with experiments used by 
other previously published methods should be encouraged.
Either simulation or real experimentation must be carefully chosen depending on the factors being 
studied.

8.Are the drawn conclusions precise and valid?

Beware of claims like “the experiment  demonstrates  the validity/robustness/effectiveness  of our 
approach”.  The contribution of the work should be clearly specified:  better  convergence speed, 
robustness against certain parameters, avoidance of typical VS problems (image features going out 
of the field of view, robot reaching joint limits...). The experimental work should be representative 
of such claimed contributions.



Autonomy/Cognitive tasks
Fabio Bonsignorio

The focus  is  to  define  quantitative  metrics  to  be  able  to  compare  such  things  as:  the  level  of 
autonomy, human-robot interaction, collaboration.
To provide methodologies to evaluate components of  intelligent systems: sensing and perception, 
knowledge representation, world models, ontologies, planning and control, learning and adapting, 
reasoning.
Other  topics  are  infrastructural  support  for  performance  evaluation,  application  specific 
performance measures.
In  this  context  intelligence  is  defined  as  “the  ability  to  act  appropriately  in  an  uncertain 
environment,  where  appropriate  action  is  that  which  increases  the  probability  of success, and 
success is the achievement of behavioral goals” (J. Albus, “Outline for a Theory of Intelligence”, 
IEEE Trans. on Systems, Man, an Cybernetics, Vol. 21, No. 3, May/June 1991). 

1.Is it an experimental paper?

Although  there  are  many  theoretical  papers  in  particular  estimating  the  computational  cost  of 
algorithms in AI ('search' in particular) and sometimes the convergence, it is quite common to use 
experiments to support theoretical/principle claims. 
Typically  conceptually  different  approaches  like  'embodied  ai'  versus  'symbolic'  are  compared. 
Since a framework quantitative theory of embodied cognition is missing the comparison should be 
based on statistically relevant sets of experiments.

2.Are the system assumptions/hypotheses clear? 

It is at least necessary to define clearly, and possibly quantitatively, the tasks, and task complexity, 
and the environments where these tasks are performed. Information metrics (Shannon Entropy etc) 
should help the definition of proper complexity measures. This is an open research field.
In this case the human/animal neurophysiology approach might be followed.

3.Are the performance criteria spelled out explicitly?

The learning time versus effectiveness in performing a task should be considered.
Stability  and  robustness  are   important  issues,  measured  with  respect  to  task/environment 
complexities.
Importance of levels of cognition.

4.What is being measured and how?

Due the wide range of possible applications this need to be well clarified. A (maybe far) benchmark 
should be animal cognitive tasks (for example mice mazes).
Importance of levels of cognition.



5.Do the methods and measurements match the criteria?

There are  examples  publicly available  in planning.  For sensory motor  coordination  information 
metrics might help.

6. Is there enough information to reproduce the work?

These  means  not  only  specifying  the  methods,  but  also  define  the  set  of  tasks,  the  set  of 
environments and the way to switch from one to another, including the learning procedures (for 
example learning time versus task execution time).

7.Do the results obtained give a fair and realistic picture of the system being studied?

In this case it is very important to variate the tasks and the environments in a comparable way.
The repeatability of learning procedures, too, must be considered.

8.Are the drawn conclusions precise and valid?

This must be stated paying proper attention to: task sets, variation procedures, environment sets, 
variation procedures, learning time/ procedures related to the above criteria.

1. James S. Albus, "Metrics and Performance Measures for IntelligentUnmanned Ground Vehicles". 
In Proceeding of the performance Metrics for Intelligent System Workshop, 2002.
2.  Angel  P.  del  Pôbil,  "Why  do  We  Need  Benchmarks  in  Robotics  Research?",  International 
Conference on Intelligent Robot and Systems, Beijing, China, 2006.
3. http://www.isd.mel.nist.gov/PerMIS_2007/index.htm
4. http://www.robot-standards.eu/
5. http://www.robot.uji.es/benchmarks/index.html
6. http://www.rawseeds.org/
7. http://www.euron.org/activities/SIGs.html
8. http://www.isd.mel.nist.gov/projects/autonomy_levels/
9. http://www.robocup.org
10. http://www.darpa.mil/grandchallenge/
11. Jacob W. Crandall and Michael A. Goodrich, "Measuring the Intelligence of a Robot and its 
Interface". In Proceeding of the performance Metrics for Intelligent System Workshop, 2003.
12. J. Minguez, J. Osuna, and L. Montano. A "Divide and Conquer"Strategy based on Situations to 
achieve Reactive Collision Avoidance in Troublesome Scenarios. In ICRA, New Orleans, USA, 
2004.
13. L. Olsson,  C.L Nehaiv,  D. Polani, “Information Trade-Offs and the Evolution  of  Sensory 
Layouts”, In Proc. Artificial Life IX, 2004.
M.Lungarella,  ,  O.  Sporns,  “Mapping  Information  Flow  in  Sensorimotor  Networks”,  PLOS 
Computational Biology, 2, 10, pp. 1301-1312 , 2006.
14, A.Lampe, R.Chatila, “Performance measures for the evaluation of mobile robot autonomy” , 
IEEE International Conference on Robotics and Automation (ICRA'06), Orlando (USA), 2006.
15. J.Hallam, G.Hayes, “Benchmarks for mobile robotics?“ In Towards Intelligent Mobile Robots: 
scientific methods in mobile robotics, Manchester University, School of Computer Science, 1997.
16. https://www.ctnbestpractices.org/



17. http://ctep.cancer.gov/handbook/hndbk_7.html
18. http://www.cancer.gov/
19. Pfeffer, J. (1993), "Barriers to the advance of organizational science: Paradigm development as 
a dependent variable". Academy of Management Review, 18: 599–620, 1993.
20. Popper, K., The logic of scientific discovery.,Hutchison, London, 1959
21.  Kuhn,  T.   The  structure  of  scientific  revolutions  (2nd  ed.),  University  of  Chicago  Press, 
Chicago, 1970.
22. I.Lakatos, "Criticism and the Methodology of Scientific Research Programmes",in  Proceedings 
of the Aristotelian Society, vol. 69 (1968-69), pp. 149-186.
23. P.K.Feyerabend,  Against Method, Verso, London, 1975.


	Abstract
	General Guidelines for Robotics Papers Involving Experiments
	SLAM
	Mobile Robots’ Motion Control
	Robot Obstacle Avoidance Papers Using Experiments
	Grasping
	Visual Servoing
	Autonomy/Cognitive tasks

